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Abstract

This paper presents a brief report on the application of Radial Basis Func-

tion Neural Networks (RBFNN) to the prediction of sensor values for fault

detection and diagnosis of the Space Shuttle's Main Engines (SSME). The

location of the Radial Basis Function (RBF) node centers was determined

with a K-means clustering algorithm. A neighborhood operation about these

center points was used to determine the variances of the individual processing
nodes.

i _ i _ _ • ,i. _¸¸ ,J ¸_¸

• •i¢!_I,; i;ii _ i:



1 Introduction

In test firing and during on-line operation of the Space Shuttle's Main Engines

(SSME), an efficient method of detecting anomalous sensor values is needed

for detection and diagnosis of engine and sensor faults. Due to the volume

of data acquired during a single test, and the fact that the nominal ranges of

sensor values are dependent upon system parameters, the analysis currently

consumes many man hours. To automate the analysis of anomalous sensor

values, the use of Radial Basis Function Neural Networks (P_BFNN) is being

investigated. This report shows that by using the last five samples in time

of a select group of sensor values, it is possible to have a RBFNN predict the

value of a particular sensor at the next discrete instant of time. The predicted

value can then be compared to the actual value. If the difference is greater

then some threshold (which could be based upon the standard deviation of

the data), then an anomalous sensor value has been detected.

A brief review of RBFNNs is given next, after which a description of the

SSME data is presented. This is followed by a presentation of the implemen-

tations and experiments performed, and suggestions for future work.

2 Radial Basis Function Neural Networks

The basic radial basis function neural network contains an input layer for

input signal distribution, a single hidden layer of processing units, ,and an

output summation unit as shown in Figure 1.

The input vector ._ with components 1 to n is presented to each process-

ing unit. Each processing unit has a centroid vector _ which determines the
location of the center of the radial basis function. The radial basis function is

applied to the Euclidean distance between the input vector and its own cen-

troid. The output of each unit is then weighted by w_ and summed together

by the unit in the third layer:

i=1

where ¢ is the radial basis function (typically Gaussian), c7/are the K centers,

and w_ are the K weighted connections from the units to the third layer.
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Figure 1: Radial Basis Function Neural Network

With this basic topology, the system can be represented in state space
form:

7= (F. _)

where F is the matrix of activations:

F

( f(ll_ - c_ll) --- f(llz_ -- C_) "_)• ° o. °

f(llzTv'-c_ll) ..- f(llz;r--cT_)

The weights can be calculated using the Moore-Penrose inverse:

t_ = (F T. F q- od) -1 • F T.

where o_ is much less than 1, and I is the identity matrix, crI is added in

the event that the square matrix F T. F is close to being singular. This

singularity will only occur if redundant data is applied to the input of the

neural system. It is also possible to calculate the weights using an iterative
gradient descent algorithm.
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Internal normalization can be implemented amongst the Gaussian nodes

themselves. Without normalization the output of each node is calculated as:

¢(lle- _,tl)

The following equation incorporates normalization across all of the Gaussian

nodes upon presentation of each input vector:

¢(11_- _,11)
E,K=I ¢(11_- _,ll)

The normalization requires that the sum of the outputs of all nodes be 1 for

any input vector. This allows for the output of smaller units to have a greater

impact on the overall output. Thus when an input vector falls between two

nodes, the system will be able to better interpolate [1].

The parameters which need to be established are the locations of the

centroids (means), the weight values, the widths of the radial basis functions

(variances), and the type of radial basis function to be used. It may be

desirable to alter the topology of the network to include direct weighted

connections from input to output, and to change the linear unit in layer

three to use a nonlinear function. Although the modifications to the topology

may reduce output error, it is no longer possible to use the simple weight

calculation mentioned above, so learning time will increase.

The locations and widths of the radial basis functions depends upon the

data being presented to the network. One way to find these parameters is to

use a clustering algorithm such as K-means on the data. Once the data has

been clustered, the centers of these clusters can be used as the centers of the

Gaussian nodes. Note that this method requires some a priori information as

to how many clusters should be performed. This number is not as important

as one might believe. This will be demonstrated when the results of the

experiments are presented.

3 Description of Data

Three sets of startup data were available, each of which contained a different

number of sensor parameters. The parameters used in each list were selected

in the work of [2]. The sensors I.D. numbers used in the training and recall

3
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Table 1: Training-based Parameter Lists

Parameter Number Parameters

List of PIDs used in training

i 6 21 58 209 734 951 1050

2 7 21 58 209 327 734 951 1058

3 8 21 52 58 209 327 734 951 1050

are depicted in Table 1. Descriptions of the sensor I.D. numbers are given
in Table 2. In this table a "T" indicates that a set of vectors was used for

training, a "V" indicates a set used only for validation. Only List1 was used

in this report. It was the easiest of the three lists to learn in terms of the

extent of required generalization necessary for adequate performance on the

validation sets. List 1 uses 6 sensor values which, when combined into a single

input vector representing the last five sampled sensor values for each sensor,

becomes a 30 dimensional vector. The sensor value that was to be predicted

for all sets is the SSME's High Pressure Oxidizer Turbine (HPOT) discharge

temperature, which has Parameter Identification (PID) number 233. It is

important to note that all of the data was transient startup data. This

data contained many transients which varied from test firing to test firing.

These transients increase the difficulty that any learning paradigm will have

in accurately interpolating between the training and validation data sets.

The HPOT sensor values for the four training sets are plotted against time

in Figure 2, the HPOT values for the validation sets are plotted in Figure 3.

From these figures it can be seen that there was a wide range of nominal
sensor values.

4 Implementations and Experiments

Six different variations of R.BFNNs were implemented in C and tested on List

1: R.BF1, R.BFll, RBF6, RBF8, RBF10 and R.BF12. All simulations were

executed on a SPAI_C IPX. These implementations mainly differ in the way

that they calculate the variance associated with each Gaussian node. All of

implementations used Gaussian based radial basis functions. The means of

/ •
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Table 2: Parameter Descriptions

PID Description

21 Main Combustion Ghasnber Oxidizer laxjection Temperature

40 Oxidizer Preburner Oxidizer VMve Actuator Position

42 Fuel Prebttrner Oxidizer Valve Actuator Position

52 High Press,tre Fuel Ptmlp Discharge Pressure

58 Fuel PrebtLrner Chamber Presmtre

59 Preburner Boost Ptrrnp Discharge Pressure

209 High Pressure Oxidizer Pmnp Ixdet Pressure

231 High Pressure Fuel Tiwbine Discharge Temperature

233t High Pressure Oxidizer Turbine Disch,xrge Temperature

327 High Pressure Oxidizer Plunp Balance Cavity Press,uce

480 Oxidizer Preburner Chaznber Pressure

734 Low Press_tre Oxidizer Ptunp Shaft Speed

951 High Pressure Oxidizer Ptmtp Primaxy Seal Drain Pressl_e

1050 Oxidizer T,'mk Dischmrge Temperature

1058 Engine Oxidizer Izdet Temperature

1205 Facility Fuel Flow

1212 Facility Oxidizer Flow

O/Cs Duarmly Paraxneter indicating Open/Closed Loop Operation

OPBs Durmny P,_rameter indicating Oxidizer Preburner Prime Time

t the modeled paxatneter

5
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the functions were chosen by the K-means algorithm. The number of clusters

to be formed by this algorithm was selected by the user. It will be shown

that the number of nodes selected was not that important as long as it fell

within a reasonable range.

In the experiments, the start up data was sampled from 0.4 to 5.96 seconds

at 25 hertz. This resulted in 140 vectors per set, or 560 vectors total for the

4 training sets:

(5.96 - 0.4) * 25 cycles/sec. + i = 140 vectors

If one Gaussian node were to be placed on every data vector, this would result

in 560 nodes. The following number of nodes were used in the experiments:

28, 56, 112, 140, 560. These correspond to using 5%, 10%, 20%, and 100%

of all possible nodes.

Note that if 560 nodes were used, then no data clustering was performed.

560 nodes were only used with P_BFll, in order to see what error would be

associated with Gaussian function interpolation on the data with fixed vari-

ance. Training occurred by presenting the four training sets to the system:

B1046, B1060, B1070 and B1077. The error statistic were then generated by

individually presenting each set and recording the errors. The experimental

results are presented in the tables and plots at the end of this text. In the

plots, both the output of the network and the desired output are plotted, next

to these are plots of the associated error. Note that in the plots the solid line

represents the output of the neural network, and the dashed line represents

the actual value of the P.I.D. 233 sensor. All the plots used between node

normalization unless otherwise noted on the plot.

All of the implementations used an iterative singular value decomposition

to invert the matrix in the weight calculation except for RBF6. RBF6 used

gradient descent to solve for the weights. This was implemented only for

processing time considerations. All of the data had originally been mapped

into the range [-0.5,0.5], although it was not necessary to have the data in

the [-0.5,0.5] range. The data was then normalized to have zero mean and

unit variance before it was presented to the K-means preprocessor. The data

was denormalized back to the [-0.5,0.5] range before it was presented to the

RBF algorithm. All algorithms randomized the order of the data vectors
so that K-means could better cluster the data. The randomization made a

dramatic improvement on the uniformity of the center distributions found

by K-means.

..... . ? : , : ....... , , : ::: : :



RBF1 and RBFll used a global variance parameter, in this case all nodes

used a variance of 0.01. This parameter was chosen heuristically to work

best with the given data. Two other forms of RBFs were created to avoid

having to choose a global variance parameter, and to allow for the variance

to vary with each node. In order to determine the effect of normalizing

across the Gaussian nodes, RBF1 was implemented without the between

node normalization, and RBFll was implemented with the between node

normalization described previously.

RBF8 used the square of the mean of the 50 nearest vectors to a centroid

(the mean of a Gaussian node) for the variance of the node which belongs to
that centroid.

RBF10 used the square median of the 50 nearest vectors to a centroid as

the variance of the node. The size of the neighborhoods used in determining

the variance was selected by trial and error. A larger size neighborhood

helps reduce the effect of data point outliers. Too large a neighborhood will

cause all nodes to have essentially the same variance. The performance of

the system was sensitive to the size of the neighborhood.

RBF12 used the kmeans algorithm to calculate the variance of each clus-

ter. Note that a Euclidean distance metric was used in calculating the dis-

tance of each vector in a cluster for the centroid of that cluster. Otherwise,

it would have been necessary to use a covariance matrix approach.

RBF6 was the same as RBF8 except that the weights were calculated

using gradient descent. The error statistics of this method will be as good

as those of the algebraic method as long as enough iterations are performed.

Thus, an important consideration is the processor time used in convergence.
The tables at the end of this text contain three columns of numbers: the

Root Mean Square (RMS) of the error between the output of the network

and the actual prediction value, the Normalized Root Mean Square Error

(NRMS), and the Maximum percentage of the error (Max %). The last two

columns will be used for comparison between the experiments.

The error statistics for RBF1 with global variance of 0.01 and 25% nodes

(i.e. 140 nodes were used out of 560 possible nodes) without between node

normalization is shown in Table 3. The Normalized Root Mean Square Error

(NP_MS) was always under 6%, and the maximum percent error was as high

as 55%. Clearly this is unacceptable for most applications. When between

node normalization was added, the greatest maximum percent error dropped
to 11% as shown in Table 4.

8



All algorithms describedfrom here on will incorporate betweennode nor-
malization. Table 5 shows the error statistics when a node was located at

every data point (560 nodes), with a global variance of 0.01. The errors were

higher in this case then when 140 nodes were used. This can be explained

by the fact that with a node on every data point, individual variances were

needed from node to node. With less nodes than data points, the clusters

may overlap without adverse affect on the function approximation capabili-

ties. It should be noted that this conjecture is only valid for the data used

in these experiments.

The greatest difficulty with the above method involves the heuristic se-

lection of two parameters: variance, and the number of nodes. In order to

avoid having to pick a variance parameter, and to provide for the ability of

each cluster to have an individual variance, other methods are being inves-

tigated. The next two methods use a neighborhood operation to assign a

variance to each cluster. Unfortunately, this still involves heuristic selection

of a neighborhood size, and of the number of nodes to be used in the network.

RBF8 used a mean neighborhood operation to determine the variance of

each node individually. To determine the variance of a node, the algorithm

calculates the mean of the vectors within some neighborhood about the cen-

troid (mean of the Gaussian) of that node. If we let N represent the size of

the neighborhood, then this can be written as:

1 N dim

variance -_ -_ _ _(xi -- ci) 2
j----1 i=l

where xi is the i th component of the input vector _, and dim refers to the

dimension of the input vectors. Thus if N -- 50, this means that the 50 input

data vectors with the smallest square distance from the centroid will be used

in calculating the variance for that centroid.

Table 6 shows the error statistics for Rbf8 with 140 nodes and a neighbor-

hood size of 50. This neighborhood size was arbitarily chosen. The effects

of this selection will be discussed later. The errors in this table are slightly

higher than for the l_bfll with 140 nodes in Table 4. However, the problem

of selecting a suitable global variance has been traded for selecting a suitable

neighborhood size. This is only a benefit if the neighborhood size selection

is less sensitive than the variance parameter.

Since in Rbf8 a mean neighborhood operation was used, it is only natural

9
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to determine if a median neighborhood operation would produce better re-
suits. Rbfl0 used the median of the square of the distance to the N nearest

input vectors to a centroid, to calculate the variance for that centroid. The

error statistics for Rbf10 using 140 nodes with a neighborhood size of 50 is

shown in Table 7. Note that the mean and median implementations produce

very similar error statistics, with the mean operation being slightly favorable.

The effects of changing the neighborhood size and the effects of changing
the number of nodes will now be discussed. Since both the mean and median

implementations produce nearly identical results, only the mean implemen-

tation RBF8 will be used to show the results. Tables 8, 9, and 10 represent

the error statistics for Rbf8 with 140 nodes and neighborhood sizes of: 5, 60,

and 95. This represents 10%, 120%, and 190% of the original value of 50.

Looking at both the NRMS and the maximum % error, it can be seen that

the errors were lower for the training sets and higher for the validation sets.

When considering only the validation sets, a neighborhood size of 5 was the

best. But even with a 90% change in the value of the neighborhood size,

the errors still remained low except for set B1071 with a neighborhood size

of 95. It should be noted that B1071 requires the most generalization of all

of the validation sets. This indicates that the selection of neighborhood size

was not critical as long as it fell within some reasonable range. This is only
significant if the output of RBF1 is sensitive to similar variations in the value

of the global variance parameter.

Tables 11, 12, and 13 show the error statistics for the global variance

(l_BF11) values of 0.001, 0.012, and 0.19. This represents a variation of

10%, 120%, and 190%. Comparing these tables with Table 4 reveals that the

errors don't really change that much even with a 90% change in the variance
parameter.

The bottom line of this is that neither the selection of the neighborhood

size nor the global variance parameter are critical as long as they fall within

some reasonable range. Thus, there is no advantage to using the neighbor-
hood operation to determine the variance.

The other heuristic to be investigated is the selection of the number of

nodes in the RBFNN. Tables 14, 15, and 16 specify the error statistics for

RBF8 with 28, 56, and 112 nodes with a neighborhood size of 50 respectively.

This represents 5%, 10%, and 20% of the possible nodes. Compare these

tables with Table 6 which had 140 nodes (25%). The error did increase

when only 5% of the nodes were used, especially the maximum percent error

10



for set B1071. The difference in error between 9_0%and 25% nodes seems
insignificant.

Tables 17, 18, and 19 represent the error statistics for tZBFll with global

variance parameter of 0.01 with 28, 56, and 112 nodes respectively. As the

variance increases the error for the training sets increases, but overall, the

errors remain small. This is because as the variance increases, the overlap

becomes too great for an individual set to be learned exactly. The RBF1

implementation seems to be a little more sensitive to the selection of the

number of nodes than the neighborhood operation RBF8.

Another performance consideration was the computation time required by

the various implementations. Since most of the algorithms were virtually the

same, only RBF8 and lZBF6 will be compared, lZBF8 used the weight matrix

inverse approach and RBF6 used gradient descent to calculate the weights.

RBF8 takes approximately 9_25 cpu seconds whereas the gradient descent

approach lZBF6 takes hours when working with 112 out of 560 possible nodes.

The gradient descent approach can be greatly improved by performing

only localized weight update. Therefore each epoch will involve only updat-

ing a small number of weights directly having influence on the output of the

given input vector, rather than updating all of the weights. Since the error

statistics for the gradient descent approach change with the number of iter-

ations performed, and those iterations are currently too expensive to justify

performing, no error statistics have been generated for the gradient descent

approach.

The latest implementation (l_bfl2) involved using the kmeans algorithm

to determine the variance of each cluster and assigning this value to each

node associated with that cluster. Since it is possible that a cluster will only

contain one or two vectors, it was necessary to create an artificial lower bound
on the calculated variance. In this case the lowest the variance was allowed

to be was 0.01. This value was-chosen so that this method could be compared

to the the global variance method. In other words, the variance of each node

will be 0.01 unless a larger value is required. Since it was desirable to have

enough overlap between the nodes to provide for sufficient generlization, all

of the calculated variances of this procedure were multiplied by a constant.

The error statistics for this method are presented in 20. Plots of this appear

at the end. The error statistics for this implementation are similar to those

presented for l_bfll. The plots also show that the behavior of the output of

the network is oscillatory about the desired value.

11
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Timing comparisons have also been made between the two clustering

algorithms: K-means and Kohonen's LVQ [3]. The two took approximately
the same amount of C.P.U. time.

5 Conclusions and Future Directions

This report has shown that combination of the K-means algorithm with
Radial Basis Function Neural Network with variable variance has allowed

for successful sensor value prediction.

Work is being done on automating the two main heuristics of this ap-

proach: the variance of the processing nodes, and the number of nodes to

use on the data. The automation is being done so that this approach may

be used as part of an on-line diagnostic, fault detection system. It should

be noted that the number of nodes and the value of the variance(s) was not

really that important as long as it fell within a reasonable range.

Investigation of the K-means algorithm as a stand-alone predictor using

vector component labeling is also proceeding. The purpose of this approach

is to determine if the weight calculations can be avoided, and to form a

compariso n to component labeling with Kohonen's LVQ.

Two approaches that are currently under investigation are the implemen-

tation of a regularization network using Radial Basis Functions, and the im-

plementation of a mulitplicative gaussian bar network. All of the approaches

described in this paper require that the variance be the same for all of the

dimensions of each node. The multiplicative gaussian bar network will allow

a varying variance not only for each node, but also for each dimension of

each node. It is hoped that this approach will allow the network to have a

smoother prediction output. Currently, as can be seen from the plots, the

output of the network tends to jump when a different group of nodes be-

comes active. This is bad when trying to use the system for fault detection

because it forces the use of large confidence intervals. Hopefully with variable

variance in each dimension, the confidence interval will be very small.

12



References

[1] John Hertz, Anders Krogh, and Richard G. Palmer. Introduction to the

Theory of Neural Computation. Addison Wesley Publishing Company, 1991.

[2] Charles C. Peck, Atam P. Dhawan, and Claudia M. Meyer. Selection of input

variables for SSME parameter model ing using genetic algorithms and neu-

ral networks. In Proceedings of the Fourth Annual Space System Health Ma

nagement Technology Conference, pages 104-118, Cincinnati, OH, Novem-

ber 1992. NASA Space Engineering Center for System Health Management

Technology.

[3] Teuvo Kohonen. The self-organizing map. In Proceedings of the IEEE,

volume voh 78, no. 9, pages 1464-1480. IEEE, September 1990.

[4] G. Cybenko. Approximation by superpositions of a sigmoidal function. Tech-

nical report, University of Illinois, Urbana, IL, December 1988.

[5] Federico Girosi and Tomaso Poggio. Networks and the best approximation

property. A.i. memo no. 1164, c.b.i.p, paper no. 45, MIT Artificial Intelli-

gence Laboratory and Center for Biological Information Processing Whitaker

College, October 1989.

[6] I.R.H. Jackson. Convergence properties of radial basis functions. Construc-

tive Approximation, 4:243-264, 1988.

[7] I.R.H. Jackson. Radial basis functions: a survey and new results. In D.C.

Handscomb, editor, The Mathematics of Surfaces III, pages 115-133. Claren-

don Press, Oxford, 1989.

[8] Tomaso Poggio and Federico Girosi. Networks for approximation and learn-

ing. Proceedings of the IEEE, 78(9):1481-1497, September 1990.

13



Table 3: Error Statistics from Parameter List 1 for Rbfl, 140 out of 560

possible nodes, global variance 0.01, no normalization across nodes

Test

FIHag

BI046

BI060

BI061

B1062

BI063

BI066

BI067

BI070

B1071

B1072

B1075

B1077

Trainiag/ RMS

Validatior

T 51.59860

T 28.21390

V 29.12591

V 39.23239

V 33.72927

V 53.21917

V 42.51067

T 22.83335

V 56.68070

V 41.90969

V 48.30697

T 36.09605

NRMS

0.05187

0.02770

0.02831

0.03863

0.03320

0.05209

0.04179

0.02182

0.05435

0.03953

0.04708

0.03450

M_.

% Error

55.43803

43.82708

37.07641

47.86150

31.26490

46.77677

29.82455

27.27271

40.25718

38.49752

44.38711

34.11739

Table 4: Error Statistics from Parameter List 1 for Rbfll, 140 out of 560

possible nodes, global variance 0.01, with normalization across nodes.

Test

Firing

B1046

BI060

BI061

BI062

BI063

BI066

BI067

BLOT0

B1071

B1072

B1075

B1077

Training/ RMS

Validation

T 9.08039

T 15.11922

V 16.56278

V 23.88363

V 24.06748

V 28.07834

V 30.19188

T 7.80751

V 36.64726

V 22.29507

V 24.04426

T 10.94992

NRMS Max.

% Error

0.00913 5.05390

0.01484 8.18955

0.01610 7.55070

0.02352 8.80874

0.02369 6.74517

0.02748 10.30139

0.02968 8.40462

0.00746 4.90432

0.03514 11.16738

0.02103 4.61144

0.02343 9.24767

0.01047 5.01032
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Table 5: Error Statistics from Parameter List I for Rbfll, 560 out of 560

possible nodes, global variance 0.01, with normalization across nodes.

Test

Firing

B1046

B1060

B1061

B1062

B1063

B1066

B1067

B1070

B1071

B1072

B1075

BI077

Training/ RMS

Validation

T 0.00721

T 5.83704

V 21.17175

V 26.14354

V 47.42S58

V 25.07479

V 55.24511

T 4.89017

V 42.73459

V 37.87623

V 27.00886

T 7.48279

NRMS Max.

% Error

0.00001 0.00164

0.00573 0.86627

0.02058 8.06793

0.02574 8.81908

0.04669 19.71690

0.02454 10.11135

0.05431 24.98962

0.00467 0.71944

0.04097 13.92102

0.03572 16.95097

0.02632 12.82674

0.00715 0.96961

Table 6:

possible nodes, neighborhood size of 50.

Error Statistics from Parameter List 1 for l_bf8, 140 out of 560

Training/ RMS

Validation

T 2.38426

T 12.59777

V 17.01483

V 27.73178

V 36.67299

V 30.88582

V 35.97727

T 7.00646

V 38.58204

V 23.79091

V 30.23295

T 9.82221

TestIFiring

BI046

BI060

BI061

BI062

BI063

BI066

BI067

BI070

B1071

B1072

BI075

B1077

NRMS Max.

% Error

0.00240 1.39597

0.01237: 8.94835

0.01654 10.51706

0.02731 7.73836

0.03610 8.43292

0.03023 9.61599

0.03537 8.59062

0.00670 4.22006

0.03699 13.70739

0.02244 7.77105

0.02946 12.56111

0.00939 7.98302
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Table 7: Error Statistics from Parameter List 1 for Rbfl0, 140 out of 560
possible nodes, neighborhood sizeof 50.

Test

Firing

BI046

BI060

BI061

BI062

BI063

B1066

BI067

B1070

B1071

B1072

BI075

BI077

Training/ RMS

VaHdatior

T 2.83764

T 13.01944

V 16.99191

V 27.63844

V 35.93978

V 30.68942

V 34.05498

T 7.27333

V 40.26593

V 23.99103

V 31.83439

T 9.86484

NRMS Max.

% Error

0.00285 2.27082

0.01278 10.44688

0.01652 8.35701

0.02721 10.59826

0.03538 7.85795

0.03004 8.84875

0.03348 7.91770

0.00695 4.86389

0.03S61 12.87269

0.02263 7.29484

0.03102 14.72255

0.00943 6.64400

Table 8:

possible nodes, neighborhood size of 5

Error Statistics from Parameter List 1 for RbfS,

Training/ RMS

Validation

T 12.59036

T 18.86700

V 15.54236

V 23.84036

V 29.50691

V 27,19326

V 27.51375

T 12.13479

V 37.65979

V 20.79559

V 25.46773

T 11.67591

Test

Firing

B1046

B1060

B1061

B1062

B1063

B1066

B1067

i BI070

B1071

B1072

BI075

"B1077

NRlVlS Max.

% Error

0.01266 5.91643

0.01852 8.26020

0.01511 8.09296

0.02347 7.95695

0.02905 6.01330

0.02661 8.17823

0.02705 6.54893

0.01160 4.74145

0.03611 14.24448

0.01961 6.86008

0.02482 9.03917

0.01116 5.18719

140 out of 560

16



...........•.......: .......... : : ..... • _:_ :/_ •: _ _:_:: i ::i¸¸/:::i_:_:: : _::̧ !:¸¸.¸¸¸?¸i¸/:¸7,/ii!i_!_J_!_!_!!i!_i_!_i_iii_!_i_?i_!_i_iiii_!ii_i_ii_!iii_i_iiiii_iiiii_ii_iii_iii_iii_i_i_i_i_i_i_i_iii_iiiiiiiiiii_iii_iiiii_i_iii_iiii

Table 9: Error Statistics from Parameter List 1 for RbfS, 140 out of 560

possible nodes, neighborhood size of 60

Tes_

Finng

BI046

BI060

B1061

BI062

BI063

BI066

BI067

BIO70

BLO71

B1072

B1075

B1077

Training/

Validation

T

T

V

V

V

V

V

T

V

V

V

T

Iqi%4S NRMS

1.99468 0.00201

12.11123 0.01189

16.98131 0.01651

26.68269 0.026'27

35.55722 0.03500

31.38819 0.03072

39.94933 0.03927

6.99'072

39.72683

25.54100

27.51913

9.43180

Max.

Error

1.47569

7.26255

9.71268

8.88408

8.21124

9.40951

9.00299

0.00668 4.03056

0.03809 14.84076

0.02409 7.60504

0.02682 10.99728

0.00902 5.93759

Table 10: Error Statistics from Parameter List 1 for P_bfS, 140 out of 560

possible nodes, neighborhood size of 95

Test

Finng

B1046

B1060

B1061

Blo62

BLO63

BLO66

BLO67

BLO7O

BLO71

BLO72

BLO75

BI077

Training'/

Validation

T

T

V

V

V

V

V

T

V

V

V

T

RMS NRMS

2.52465 0.00254

5.89194 0.00578

14.11111 0.01372

25.79183 0.02540

32.26750 0.03177

28.31700 0.02771

40.62741 0.03994

5.18299

65.97996

39.38403

20.39765

5.62804

_%'[ax.

Error

1.01239

2.65420

8.36682

14.42955

14.S7512

15.87984

11.26816

0.00495 2.84313

0.06326 32.48063

0.03715 21.43067

0.01988 9.73600

0.00538 2.67773
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Table 11: Error Statistics from Parameter List 1 for R.bf11, 140 out of 560

possible nodes, global variance 0.001, with normalization across nodes.

Test

Firing

B1046

B1060

B1061

B1062

B1063

B1066

B1067

B1070

B1071

B1072

B1075

BI077

Training/ [L_IS

Validation

T 17.39792

T 19.24398

V 14.86860

V 22.17325

V 25.62952

V 24.79422

V 25.81279

T 12.97352

V 39.82024

V 26.84831

V 25.14532

T 11.28997

NRMS

0,01749

0.01889

0.01445

0.02183

0.02523

0.02427

0.02538

0.01240

0.03818

O.02532

0.02450

0.01079

Max°

% Error

9.41842

8.72347

9.14472

7.69661

6.37022

8.00535

6.63005

5.38796

15.11610

6.29536

9.98049

5.32295

Table 12: Error Statistics from Parameter List 1 for Rbfll, 140 out of 560

possible nodes, global variance 0.012, with normalization across nodes.

Test

FiHng

BI046

BI060

BI061

B1062

B1063

BI066

BI067

BI070

BLOT1

B1072

B1075

BIO77

Training/ RMS

Validation

T 7.53711

T 14.65475

V 16.48162

V 24.26593

V 25.48573

V 27.90006

V 31.02996

T 7.65893

V 36.54959

V 23.02699

V 23.63481

T 10.89041

NRMS Max.

% Error

0.00758 4.02564

0.01439 8.15110

0.01602 7.53241

0.02389 8.67870

0.02509 8.54002

0.02731 10.27619

0.03050 8.69295

0.00732 4.90027

0.03504 10.38719

0.02172 4.71767

0.02303 9.14347

0.01041 4.90642
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Table 13: Error Statistics from Parameter List 1 for Rbfll, 140 out of 560
possible nodes, global variance 0.019, with normalization acrossnodes.

Test

Fi_n$

B1046

B1060

B1061

B1062

B1063

B1066

B1067

B1070

B1071

B1072

BIO75

BI077

Training/ RMS

VaHdation

T 3.77056

T 13.21858

V 18.48718

V 26.25988

V 29.54284

V 26.13952

V 31.32031

T 6.90393

V 37.59862

V 29.65932

V 24.94946

T 10.57636

NBA4S

0.00379

0.01298

0.01797

0.02586

0.02908

0.02558

0.03079

0.00660

0.03605

0.02797

0.02431

0.01011

Error

1.80409

7.99314

7.70497

8.18643

11.77689

9.94572

9.47755

4.77293

9.40509

7.29677

9,01241

5.07506

Table 14: Error Statistics from Parameter List 1 for RbfS, 28 out of 560

possible nodes, neighborhood size of 50.

Tes

FiHng

B1046

B1060

B1061

B1062

B1063

B1066

B1067

B1070

B1071

B1072

B1075

BI077

Training/ RMS

Validation

T 14.41434

T 28.22631

V 20.45557

V 27.14355

V 31.14893

V 25.22222

V 31.01706

T 18.86116

V 42.92448

V 25.89541

V 29.25733

T 14.43709

NRMS

0.01449

0.02771

0,01988

0.02673

0_3066

0.02469

0.03049

0.01803

0.04116

0.02442

0.02851

0.01380

M_x.

% Error

9.00289

15.22439

15.12137

13.25370

7.27571

9.23387

6.86656

6.47004

23.21731

7.66308

14.23219

7.00140
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Table 15:

possible nodes, neighborhood size of 50

Error Statistics from Parameter List 1 for RbfS, 56 out of 560

Training/ R.MS

VaHdation

T 4.45642

T 19.72829

V 13.82834

V 27.61247

V 30.51164

V 27.69112

V 28.52224

T 9.74294

V 36.70488

V 19.51650

V 23.80098

T 13.61962

Te_

Firing

B1046

B106o

B1061

B1062

B1063

B1066

B1067

BI070

BI071

B1072

B 1075

B1077

NR/V/S Max.

% Error

0.00448 2.73107

0.01937 8.06534

0.01344 7.98474

0.02719 6.78202

0.03004 5.60983

0.02710 7.22070

0.02S04 6,90655

0.00931 4.63169

0.03519 11.93740

0.01841 4.33229

0.02319 8.70032

0.01302 4.74346

Table 16:

possible nodes, neighborhood size of 50.

Error Statistics from Parameter List 1 for Rbf8, 112 out of 560

Training/ RMS

Vaffdation

T 2.83689

T 15.10454

V 15.33540

V 27.02377

V 31.69655

V 30.97042

V 30.84572

T 7.02387

V 36.32853

V 19.99030

V 20.72743

T 13.02576

Test;

Firing

B1046

B1060

B1061

B1062

B1063

B1066

B1067

BI07O

B1071

B1072

BI075

B1077

I NR_IS iVlax.Error

0.00285 1.87113

0.01483 7.26094

0.01491 9.99841

0.02661 7.66580

0.03120 6.39428

0.03031 9.15610

0.03032 7.25803

0.00671 4.29946

0.03483 11.16077

0.01885 7.18022

0.02020 9.70741

0.01245 7.72375

2O
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Table 17: Error Statistics from Parameter List 1 for Rbfll, 28 out of 560

possible nodes, global variance 0.01, with normalization across nodes.

Test

Firing

B1046

B1060

B1061

B1062

B1063

B1066

B1067

B1070

B1071

B1072

B1075

B1077

Training/ RMS

Va_dation

T 27.18175

T 25.14493

V 16.65054

V 24.08476

V 30.18663

V 22.65658

V 30.09099

T 18.25288

V 39.08114

V 22.67000

V 26.91294

T 12.99691

NR_IS Max.

% Error

0.02732 15.67179

0.02468 11.02959

0.01619 10.56191

0.02372 8.69066

0.02972 6.02264

0.02217 6.00475

0.02958 6.73048

0.01745 6.61461

0.03747 15.32269

0.02138 5.39135

0.02623 11.02567

0.01242 5.55255

Table 18: Error Statistics from Parameter List 1 for Rbfll, 56 out of 560

possible nodes, global variance 0.01, with normalization across nodes.

Test

Firing

B1046

B1O60

B1061

B1062

B1063

B1066

B1067

B1070

B1071

BI072

B1075

B!o77

Training/ RMS

Validation

T 16.89184

T 22.36876

V 14.56266

V 20.76527

V 23.57223

V 21.93067

V 25.39526

T 15.45565

V 40.40978

V 23.68318

V 24.96156

T 11.03639

NRMS Max.

% Error

0.01698 9.67346

0.02196 10.31860

0.01416 10.03354

0.02045 8.12575

0.02321 5.79424

0.02146 5.90312

0.02497 6.24095

0.01477 5.73375

0.03875 13.09041

0.02234 5.45226

0.02433 10.16316

0.01055 5.47923
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Table 19: Error Statistics from Parameter List 1 for Rbf11, 112 out of 560

possible nodes, global variance 0.01, with normalization across nodes.

Test

Firing

B1046

B1060

B1061

B1062

B1063

B1066

B1067

B1070

B1071

B1072

BI075

B1077

Training/ RMS

VaHdatinn

T 9.19158

T 18.42548

V 14.63324

V 22.38574

V 22.37034

V 24.51416

V 27.92617

T 9.62823

V 37.67616

V 26.63420

V 25.96042

T 12.05393

NB.MS

0.00924

0.01809

0.01422

0.02204

0.02202

0.02399

0.02745

0.00920

0.03612

0.02512

0.02530

0.01152

M_x.

Error

5.07136

8.74580

7.68326

7.07681

5.83572

7.59422

7.61870

5.21438

11.96297

4.70912

9.57053

4.43430

Table 20: Error Statistics from Parameter List 1 for P_bf12, 140 out of 560

possible nodes

Test

Firing

BI046

BI060

BI061

BI062

BI063

BI066

BI067

B1070

BI071

BI072

BLO75

BI077

Training/ RMS

Validation

T 6.01873

T 14.86046

V 16.48907

V 23.49133

V 23.95228

V 28.18141

V 30.06580

T 7.49930

V 36.89098

V 22.69011

V 24.03571

T 11.20852

NRMS

0.00605

0.01459

0.01603

0.02313

0.02358

0.02758

0.02956

0.00717

0.03537

0.02140

0.02342

0.01071

M_x.

Error

3.15011

7.73349

7.48909

8.62899

:6.73804

9.58983

8.39820

4.29970

11.30262

4.92904

9.16707

6.01282
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• ::: __: __::: ::_: _/:_:i: :: _: i::i:_ii:_,i i:::!__i!__i:: :ii_iii_iiiii!!_i!ii:_!i_:i:_!i:i_i;_ii!:ili_iii_i!il¸_i_i_i!_i:!_i_i_i_iiiii_i_ii_i_iiii_i_!_iiii_ii_iiiiiiiiiiiiiiiiiii_iiiiiii_iii_iiiiii_iiiiiiiiii_iiiiiii_iiiiii_iiiii_iiiiiii_i_iiii_

160(]

1400

_1200

Q.

_1000
_=

41711

RBF8 wi_ 140 nodes out of 560, netgi_rhood 5, TBI061

1 2 3 4 S
Seconds

RBF8 with 140 nodes out of 560, neigt_boP_od 5,1"81062

Error for RBF8 wig_140 nodes o_t of 560, n_ 5, "1"B1061
150_

100

o.

¢N
O_
Q.

P
U_

-I00

-150
0

150

1 2 3 4 5
Seconds

En'or for RBF8 w_h 140 nodes out ot 560, nei(jhbo_ood 5, T81062

1400

_ 1200;
o_
Q.

p-

600

400
0

Ill IIII

I II

i i III

i i i

Seconds

100

oC

o.

C
Q

_-50
p.
uJ

-100

.150

Seconds

Figure '2:Rbf8 with 140 nodes, neighborhood 5



:: ........ : : • : : : -: :: : : : ::::: ..... _: _: • :.... : , :: : :: :i:.:_!: i_:::i_i::_:i:_:::_::__i:_iii:_:iii:i_i:i!::;_!i:_:i:_¸_:_ii:i_i_:i:_i:_iii_!i!_!_i!i_:_i:i_i_i_!_ii_i:_:!i_i_:_i_:_i_i_i_ii_ii_ii_iiiii:_!_iii_iiiiiii_iiiiiiiiiiiii_iiiiiiiiiiiii_ii_

1600
RBF8 will 140 nodes out of 560. neigtYoothood 5,1"B1063 En'orfor RBF8 wiltl 140 nodes ocmtot 5_0, neigttx_rhood S. 1'B1063

150

1400

_121X
Q
O.

_I_

I-'-

4OO
0

1600

I II

i I

i I r

Seconds

RBF8 wilt1140 nodes oul of 560, neig#_bodlood 5. TBI066

10(

O.

O
E.

_-50
e
w

-11111

-150
0

1SO

Seconds

Error for RBF8 wilh 140 nodes out ot 560. neigtlborho(xl 5, 1"B1066

140(;

_120C
O

O.

I'-

60O

400 ¸

IIII i /

iI

/I

I l T I T

1 2 3 4 S
Seconds

10(

o

0
Q

_-50

w

-11111

-15ll I I I

Figure 3:l_bf8 with 140 nodes, neighborhood 5

: i " !,;' i_ _: _ y

•,• :i ' ¸ • .:: • ,:, :• ::



160_

1400

'-_1200
a_
o,.

_"8oc
I-,.

6QO

400
0

160(

140_

1200
_a
O.

_1000

m

60_

40O
0

RBFB wi_ 140 nodes out of 560° neighborhood 5, 7131067
, 150

r r II 2 ; 4 ;
S_

RBF8 wi_ 140 nodes out of 560. neigttborhood 5, 1131070

; i I i i
1 2 3 4 S

Seconds

100

_so
n

a
n

UJ

-100

-150
0

15C

100

o¢

rt

_Q
Q.

p.
W

-100

Error for RSF8 wil_ 140 nodes o_t o! 5_0. neighborhood 5, 1"131067

i i t i
1 2 3 4 5

Seconds

Error for RBF8 with 140 nodes out of 560. n_gm'_borhoodS, TB1070

l l i
% i 2 _ 4 ;

Seconds

Figure 4:Rbf8 wiLh 140 nodes, neighborhood g



' : : _ • " :::: _::: : : _ : ::: _ : • : h ¸ : :_hJ!_i:(! : :i:ii :::_:i:::!,i::i!::.:Yiiiiiiii:!:i_!_iil_!_!i!_!_i_ij_i_y_ii_ii_iii!_iii_i_i_ii_iiiii_i_i_iiiiii_i_iii_i_iiiiiii_iiii

160¢

1400

_1o0o

60C

40C

1600

1400

1200
a
Q.

I.-

40O
0

RSF8 with 140 nodes out of 560, neighbodlocd 5, ]'81071

!

iI

iiI

/I//I

/

i i 1

Seconds

RBF8 with 140 nodes out of 560, neigtzborhnod5, 1"81072

i I t /

I i t i I
1 "2 3 4 s

Seconds

15¢

I0O

so

Q.

a
&

_._

tll

.lOO;

-15C

150

100

o=
5o

o.

o.

_-S,

Lu

-lo0

Enor for RBF8 with 140 nodes _t of 5_0, neigl"borhood5, T81071

I i + I i
1 2 3 4 5

Error for RBF8 with 140 nodes out of 560, neigt'tbort'zood 5, TB1072

5O i i i i i
"1--0 1 2 3 4 5

Secon(_

Figure 5:Rbf8 with 140 nodes, neighborhood 5

_ :;, • ,:•i'¸ + + +• :(: ....... ::i !i"

• _ i_ __ _ : :_ +_ + • :i'_iI _'i,i_/,_



_o

u_

c=

o

o=

i

UOllOtpeJd I_ Old Jo| JOZt:l

..... co

_ c_ 1

_:_ Old Jo| elnlRJedwej.

u_

o

o

tu

c_

o

o=

c_

(
>

_:e_ Glcl JOl eJntgJedule.L

i

o

0
o

o

0

0

ii L



.... :: __ _...... i _ .....<: :>: : : < < ;:_:_:<_i : _ :::< < :!:<i< _,:<_::E:i :i__i i! !::i<il¸_;:<:; i!:i_i!i! • <<!:_i!: ;__i!i:_illl!!_!<:<!i_!i_i_i_i!_ii_!_!<_iii!ii_i_i_i_i_ii_i_i_i_!_i_ii_i_i_ii_i!_iiiii_iiiiii_iiiiiiii_iii_iiii_iiiiiiiiiiiii_iiiiiiiiiiiiiiiiiii]iiiii

160(

140(3

120(3
04
c_
o.

_looe

.'=8O0

}
_- 60O

40O

2%

16OO

140(

c_ 120C
9
Q.

®

400
0

RI3F10 with 140 nodes out of 560, neighborhood 50, TB1046

Seconds

RBF10 with 140 nodes out of 560, neighborhood 50, TBI071

i

/

iiI

iiii/1_1

r i i i =
1 2 3 4 5 6

Seconds

150

10(

o=

Q
O.

O
E.

-5C

tu

-100

-150

150

IO0

o
o.

o.

t_

-1SO

Enor for RBF10 v_CJ140 nodes out of 560, neicjtt_rllood 50, TB1046

z t

rmr for RBFIO wiUl 140 nodes out of 560, neighborhood _0, 1"BI071

1 2 3 4 5
,Seconcts

• < _........ < i̧ ; 7_ 7 ¸¸?;7¸¸i

• i<ii_<i_ < ii_:<_<_::///i/; ¸¸¸ i' _ •



ii'i._' i __

_,,i___i_ii

o_
Temperature for PID 233

r_

J

J

O3

Error for PID 233 Prediction

'<: _.

i i

"n

o

rrl

==

o=

i
o

c.n

Temperature for PID 233

Error for PIE) 233 Prediction
._.

.,=

-n

o=

o

|
o.



o c

Temperature lot PID 233

/
/

r

¢;='

i

Error for PID 233 Prediction

i i

o

o

o_

J=.

o

Temperature for PID 233

t_

Error lot PID 233 Prediction

__=.-

o

i
9.



160C

1400

o_1200

o_

4OO

2%

140(:

120Q

Q.

I--

RBF12 wig1140 nodes cdJtof 560, TB1063

III I /

I It

I i i I i

1 2 3 4 s
Seconds

RBF12 wilt1140 nodes o_Jtof 560,1"91066

I III I /

i I

III

; I I1 _ 3 4
Seconds

150

O.

e_ 0
E_

l-
w

qSO;

Enor for RBF12 with 140 nodes out of 560, T81063

Seconds

Error for RBF12 with 140 nodes out of 560, TB1066

1

Ol

o_
Q.

ul

-11111

-150
0 1 2 3 4 5 6

Seconds



RBF12wilt)140nodesotJtof560,TB1067
1600 150 ErrorforRBF12with140nodesou_of560,181067

140(

_120(
g
Q..

_tooo

p.

60_

40Q

1600

ll I/

I I

I i r i i
1 2 3 4 5 6

Seconds

RBF12 with 140 nodes out of 560, T'BI070

IO0

c
o

o.

o4
a
O.

p.
Lg

-10C

-1.=

150

i i i i i
1 2 3 4 5

Error for R8F12 with 140 nodes _t of 560. TB1070

1400

_1200
a_
Q.

p-

60_

100

i i i i /
1 2 3 4 5 6

Seconds

o:

O.

oa
a_
Q.

LU

-10C

400 -1_
0

i i i i i
1 2 3 4 5



RBF12with140nodesoutof560, TB1071
1600 150

1400,

¢_120C
_.g
o.

k-

140C

120G

el

0
I-

4_

I

I I

III

ill II

I I r _ I

1 2 3 4 5

RBF12 wi01140 nodes out of 560, TB1072

I I I J I

I 2 3 4 S
Seconds

100

o.

g
,I

z-
w

-10C

-150

150

IO0

o=

@

_.g
O.

-100

Error for RSF12 _ 140 nodes oul of 560. TB1071

1 2 3 4 S
Seconds

Error for RBF12 w_h 140 nodes out of 560, TB1072

I _ I t I-1% 1 3 4 5

Seconds



16_X

140_

1200
Q
Q,.

I,-

60O

400¸

160¢

140_

,'_1200

o.

P1ooo
2

I-

600

400

RBF12wil_140 nodeso_tof560, TB1075

I I I

I I

ii I

i _ i i i i

I 2 3 4 S 6
Seconds

RBF12wi_ 140nodesoutof:560,I"131077

i

1 l I i t

1 2 3 4 5

Error for RBF12with140nodesoutof560. TB1075
150

100

/I

0
Q

t-

-15_

150

100

__.so
®

O.

0
Q

kU

1 2 3 4 5
Seconds

ErrorforRBF12with140nodesoutof560,TB1077

i i i 1 r

I 2 3 4 5



...... _ _ + _ _ _ _ _ _ __ :_ _ _ _> < < _ <i̧¸_<_:_i_!<_%i_i!i_!i!i!`_!_i<:_i!_i:i!_i_i!i_i_i_i_!!_i_ii_!_ii<_;_iiii_iiii!ii_i_i_i_ii_iiii_ii_iii_iii_iii_i_i_ii_iiii_iiiiii_i_i_i_iiiiiiiii_iiii_ii!iiiiiiiiii

Form Approved
REPORT DOCUMENTATION PAGE OMS No. 0Z04-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Off ce of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

June 1993 Final Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Radial Basis Function Neural Networks Applied to NASA SSME Data

6. AUTHOR(S)

Kevin R. Wheeler and Atam P. Dhawan

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Cincinnati
Department of Electrical and Computer Engineering
Cincinnati, Ohio 45221 ML 30

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135-3191

WU-584-03-11
NCC3-308

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-9347

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-195417

11. SUPPLEMENTARY NOTES

Project manager, June F. Zakrajsek, Space Propulsion Technology Division, NASA Lewis Research Center, organization

code 5310, (216) 433-7470.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified -Unlimited
Subject Category 15

This publication is available from the NASA Center for Aerospace Information, (301) 621-0390.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This paper presents a brief report on the application of Radial Basis Function Neural Networks (RBFNN) to the prediction
of sensor values for fault detection and diagnosis of the Space Shuttle's Main Engines (SSME). The location of the Radial
Basis Function (RBF) node centers was determined with a K-means clustering algorithm. A neighborhood operation
about these center points was used to determine the variances of the individual processing nodes.

14. SUBJECT TERMS

Neural networks; Space shuttle main engine

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

63
16. PRICE CODE

A04
19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF ABSTRACT

Unclassified

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18

298-102

i• ,, .... i i• i
i I . .


